LUMEL

MODULE WITH 8 LOGIC INPUTS SM5

USER'S MANUAL C

CONTENTS

1. APPLICATION 5
2. MODULE SET 5
3. BASIC REQUIREMENTS AND OPERATIONAL SAFETY 6
4. INSTALLATION 8
4.1. Module fixing 8
4.2. Electrical connections 8
5. SERVICE 11
5.1 Description of the MODBUS protocol implementation 11
5.2 Description of the MODBUS protocol functions 12
5.3. Map of module registers 15
5.4. Set of module registers 16
6. TECHNICAL DATA 20
7. BEFORE A DAMAGE WILL BE DECLARED 21
8. ORDERING CODES 22

1. APPLICATION

The SM5 module has 8 logic inputs and RS-485 and RS-232 interfaces with MODBUS RTU and ASCII transmission protocols.
It is destined to readout logic states of logic inputs and enables their access in industrial systems. Ports in RS-485 and RS-232 are galvanically isolated from input signals and the supply. The module programming is possible by means of the RS-485 or the RS-232 port. Configurable baud rate: 2400, 4800, 9600, 19200, $34800,57600,115200 \mathrm{bit} / \mathrm{s}$. The SM5 module set includes a connecting cable to connect with the PC computer (RS-232).

2. MODULE SET

The set consists of:

- SM5 module 1 pc.
- plug with BU1005 screw terminals 2 pcs
- plug with BU0204 screw terminals 2 pcs
- RS-232 socket hole plug .. 1 pc

When unpacking the module, please check whether the type and version code on the data plate correspond to the order.

3. BASIC REQUIREMENTS, SAFETY INFORMATION

Symbols located in this service manual mean:

WARNING!

Warning of potential, hazardous situations. Especially important, one must acquaint with this before connecting the module. The non-observance of notices marked by these symbols can occasion severe injuries of the personnel and the damage of the module.

CAUTION!

Designates a general useful note. If you observe it, handling of the module is made easier. One must take note of this, when the module is working inconsistently to the expectations. Possible consequences if disregarded!
In the security scope the module the requirements of the EEC. Low-Voltage Directive (EN 61010-1 issued by CENELEC).

Remarks concerning the operator safety:

1. General

- The SM5 module is destined to be installed in measuring systems, on a 35 mm mounting rail
- Non-authorized removal of the required housing, inappropriate use, incorrect installation or operation creates the risk of injury to personnel or damage to equipment. For more detailed information please study the user's manual.
- All operations concerning transport, installation, and commissioning as well as maintenance must be carried out by qualified, skilled personnel and national regulations for the prevention of accidents must be observed.
- According to this basic safety information, qualified, skilled personnel are persons who are familiar with the installation, assembly, commissioning, and operation of the product and who have qualifications necessary for their occupation.

2. Transport, storage

Please observe the notes on transport, storage and appropriate handling.
Observe the climatic conditions given in technical data.

3. Installation

- The module must be installed according to the regulation and instructions given in this user's manual.
- Ensure proper handling and avoid mechanical stress.
- Do not bend any components and do not change any insulation distances.
- Do not touch any electronic components and contacts.
- Modules may contain electrostatically sensitive components, which can easily be damaged by inappropriate handling.
- Do not damage or destroy any electrical components since this might endanger your health!

4. Electrical connection

- Before switching the module on, one must check the correctness of connection to the network.
- In case of the protection terminal connection with a separate lead, one must remember to connect it before the connection of the module to the mains.
- When working on live modules, the applicable national regulations for the prevention of accidents must be observed.
- The electrical installation must be carried out according to the appropriate regulations (cable cross-sections, fuses, PE connection). Additional information can be obtained from the user's manual.
- The documentation contains information about installation in compliance with EMC (shielding, grounding, filters and cables). These notes must be observed for all CE-marked products.
- The manufacturer of the measuring system or installed devices is responsible for the compliance with the required limit values demanded by the EMC legislation.

5. Operation

- Measuring systems including SM5 modules must be equipped with protection devices according to the corresponding standard and regulations for prevention of accidents.
- After the instrument has been disconnected from the supply voltage, live components and power connections must not be touched immediately because capacitors can be charged.
- The housing must be closed during operation.
- The RS-232 socket serves only to connect the device (Fig. 2) working with the MODBUS protocol. When the module is not used, place the hole plug in the RS-232 socket of the module.

6. Maintenance and servicing

Please observe the manufacturer's documentation.
Read all product-specific safety and application notes in this user's manual.

- Before taking the module out, one must turn the supply off.
- The removal of the module housing during the guarantee period may cause its cancellation.

4. INSTALLATION

4.1 Module fixing

The SM5 module is fixed on a 35 mm rail in accordance with EN 60715. The module housing is made of a self-extinguishing plastic. Overall dimensions of the housing: $45 \times 120 \times 98 \mathrm{~mm}$.
Overall dimensions and the fixing way are presented on the fig. 1.

Fig.1. Overall dimensions and way of the module fixing

4.2. Electrical connections

Following external wires can be connected to the module:

- up to $2.5 \mathrm{~mm}^{2}$ cross-section (from supply and interface side),
- up to $1.5 \mathrm{~mm}^{2}$ cross-section (from input signal side).

Caution:

One must pay special attention to the correct connection of external signals (see fig. 2)

Caution:

Regarding electromagnetic interference one must use shielded wires to connect binary input signals and RS-485 interface signals. The shield must be connected to the protective terminal in one point.

SUPPLY DEPENDING
on THE
EXECUTION CODE
(80... 253 V a.c./d.c.

Fig 2. Electrical connections of SM5 logic input module
There are three diodes on the frontal plate:

- green - signals switching the supply on
- green (RxD) - signals data reception through the module
- yellow (TxD) - signals data transmission through the module

The „+" signal (terminal 10) is the 5 V output with admissible overload 100 mA . One must connect binary signals to the mass and appropriate output terminal.
The way to connect interfaces are shown on fig. 3 and 4 . To obtain a correct transmission through the RS-485 interface it is necessany to connect lines A and B lines in parallel with their equivalents in other devices. The connection must be made with a shielded wire. The shield must be connected to a shielded wire. The shield must be connected to the protective terminal, in one point.
The GND line serves to equalize potentials of interface lines in the communicating devices.
To obtain the communication with the computer of PC class throught the RS-485 port, it is essential to apply an RS-232/RS-485 converter (e.g. PD51 from Lumel production) or an RS-485 interface card. Marking of transmission lines for the card in the PC computer depends on the card producer.
To obtain the connection through the RS-232 port, the added wire in the module set, is sufficent.
The module can be connected to a device of master type through one interface port. In case of the simultaneous connection of both ports, the module will work through the RS-232 interface

Fig. 3 Way of the RS-485 interface connection.

Fig. 4 Way of the RS-232 interface connection.

5. SERVICE

After connecting external signals and switching the supply on, the SM5 module is ready to work.
The lighted green diode signals the module work. The green diode (RxD) signals the module polling, however the yellow diode (TxD) signals the module response. Diodes should ignite in cycles during the data transmission, through the RS-232 or the RS-485 interface. Programmable parameters of the module can be programmed by means of RS-232 or RS-485 ports.
The RS-232 port has constant transmission parameters acc. to technical data, what enables the connection to the module even when programmed parameters of the digital RS-485 output (address, mode, rate) are unknown
The RS-485 standard allows to the direct connection to 32 devices on a single serial link up to 1200 m . To connect a greater number of devices it is necessary to use additional intermediate-separating systems (e.g. the PD51 converter/repeater).

5.1. Description of MODBUS protocol implementation

The transmission protocol describes ways of the information exchange between devices through serial links.
The MODBUS protocol has been implemented in the module in accordance with the PI-MBUS-300 Rev G specification of the Modicon company.
Set of parameters of the module serial link in the MODBUS protocol:

- module address
- baud rate
- working modes
- 1... 247
- 2400, 4800, 9600, 19200, 38400, 57600, 115200 bit/s
- ASCII, RTU
- information unit
- ASCII: 8N1, 7E1, 701
- RTU: 8N2, 8E1, 8O1, 8N1
- maximal response time - 300 ms .

The parameter configuration of the serial link is described in the further part of the user's manual. It consists on establishing the baud rate (baud parameter), device address (Adr parameter) and the information unit type (Mode parameter).
In case of the module connection with the computer through the RS-232 wire, the module set automatically following transmission parameters:

Baud rate: 9600 bps,
 Working mode: RTU 8N1,
 Address:
 1.

Notice: Each module connected to the communication network must:

- have a unique address, different from addresses of other devices connected to the network,
- identical baud rate and information unit type,
- the message sent with the address "0" is identified as the data transmission mode (transmission to many devices).

5.2. Description of the MODBUS protocol function

Following functions of the MODBUS protocol have been implemented in the SM5 module.

Description of MODBUS protocol functions
Table 2

Code	Signification
$02(02 \mathrm{~h})$	Readout of n -bit registers
$03(03 \mathrm{~h})$	Readout of n-register
$04(04 \mathrm{~h})$	Write of n -input registers
$06(06 \mathrm{~h})$	Write of a single register
$16(10 \mathrm{~h})$	Write of n -registers
$17(11 \mathrm{~h})$	Slave device identification

Readout of n -registers (code 02h)

The function is not accessible in the broadcast mode.
Example: Readout of 8 bit registers beginning by the register with the 07DOh (2000) address
Request:

Device address	Function	Register address		Number of registers		Checksum CRC
		Hi	Lo	Hi	Lo	
01	02	07	D0	00	08	7941

Answer:

Device address	Function	Number of bytes	Value from the register $2200-2207$	Checksum CRC
01	02	01	01	6048

Readout of n-registers (code 03h)

The function is not accessible in the broadcast mode.
Example: Readout of 2 registers with 1DBDh (7613) address:
Request:

Device address	Function	Register address Hi	Register address Lo	Number of registers Hi	Number of registers Lo	Checksum CRC
01	03	1 D	BD	00	02	5243

Answer:

Device address	Function	Number of bites	Value from the register 1DBD (7613)				Value from the register 1DBE (7614)			Checksum CRC	
01	03	08	$3 F$	80	00	00	40	00	00	00	428 B

Readout of \mathbf{n}-input registers (code 04h)

The function is not accessible in the broadcast mode.
Example: readout of 1 register with the 0FA3h (4003) address
Request:

Device address	Function	Register address Hi	Register address Lo	Number of registers Hi	Number of registers Lo	Checksum CRC
01	04	0 F	A 3	00	01	C 2 FC

Answer:

Device address	Function	Number of bytes	Value from the register OFA3 (4003)	Checksum CRC	
01	04	02	00	01	78 F0

Write of values in the register (code 06h)

The function is accessible in broadcast mode.
Example: Write of the register with 1DBDh (7613) address
Request:

Device address	Function	Register address Hi	Register address Lo	Value from the register 1DBD (7613)			Checksum CRC
01	06	1D	BD	3 F	80	00	00
85 AD							

Answer:

Device address	Function	Register address Hi	Register address Lo	Value from the register 1DBD (7613)		Checksum CRC	
01	06	1D	BD	3 F	80	00	00
85 AD							

Write into n -registers (code 10h)

The function is accessible in the data transmission mode.
Example: Write 2 registers beginning from the register with 1DBDh (7613) address.
Request:

Device address		Register address		Number of registers		Number of bytes	Value from the register 1DBD (7613)				Value from the register 1DBE (7614)				Checksum CRC
		Hi	Lo	Hi	Lo										
01	10	1D	BD	00	02	08	3 F	80	00	00	40	00	00	00	0309

Answer:

Device address	Function	Register address Hi	Register address Lo	Number of registers Hi	Number of registers Lo	Checksum (CRC)
01	10	1 D	BD	00	02	$\mathrm{D7} \mathrm{80}$

Report identifying the device (code 11h)

Request:

Device address	Function	Checksum (CRC)
01	11	C0 2C

Answer:

Device address	Function	Number of bytes	Device identifier	Device state	Software version number	Checksum
01	11	06	$8 D$	FF	XXXX	

Device address
Function
Number of bytes
Device identifier
Device state
No of the software version
software
Checsum

- depends on the set value,
- function number: 0×11,
- 0x08
- 0x8F
- 0xFF
- software version implemented in the module:1.00 XXXX - 4-byte variable of float type
- 2 bytes, in case of work in the RTU mode
- 1 byte, in case of work in the ASCII mode

Example:

The work in RTU mode, e.g.: Mode = RTU 8N2 (value 0×02 in case of readout/write through the interface).
Device address set on $\mathbf{A d r}=\mathbf{0 x 0 1}$,
For the SM5 module, the response frame has the following shape:

Device address	Function	Number of bytes	Device identifier	Device state	Nunber of softwer wersion	Checksum CRC
01	11	06	8 E	FF	3 F 800000	AE 1B

Jest to moduł SM5, wersja oprogramowania 1.00

5.3. Register map of the module

Register map of SM5 module series

Address range	Value type	Description
$2000-2007$	bool (1 bit)	The value is located in 1-bit register. Registers can be read out and written.
$4000-4100$	integer (16 bitów)	The value is located in 16-bit registers. The register content corresponds to the 32-bit register contents from the 7500 area. Registers are only for readout.
$4200-4300$	integer (16 bitów)	The value is located in 16-bit registers. The register content corresponds to the 32-bit register contents from the 7600 area. Registers can be read out and written.
$7500-7600$	float (32 bity)	The value is located in the 2-bit register. Registers are only for readout.
$7600-7700$	float (32 bity)	The value is located in the 32-bit register. Registers can be read out and written.

5.4. Set of module registers

Set of registers for readout the SM5 module
Table 3

			Name		$\frac{\pi}{5}$	Quantity name
	4000	7500	Identifier	0	-	Constant identifying the device
	4001	7501	Status 1	0	-	Status 1 is a register describing current states of binary inputs.
	4002	7502	Status 2	0	-	Status 2is a register describing current transmission parameters.
2000	4003	7503	W1	0	-	Value of read out state of input 1
2001	4004	7504	W2	0	-	Value of read out state of input 2
2002	4005	7505	W3	0	-	Value of read out state of input 3
2003	4006	7506	W4	0	-	Value of read out state of input 4
2004	4007	7507	W5	0	-	Value of read out state of input 5
2005	4008	7508	W6	0	-	Value of read out state of input 6
2006	4009	7509	W7	0	-	Value of read out state of input 7
2007	4010	7510	W8	0	-	Value of read out state of input 8

Description of the Status1 register

Bit-15... 8 not used
State 0
Bit- 0 State of IN 1 input
0 - open
1 - shorting
Bit- 1 State of IN 2 input
0 - open
1 - shorting
Bit- 2 State of IN 3 input
0 - open
1 - shorting
Bit- 3 State of IN 4 input
0 - open
1 - shorting
Bit- 4 State of IN 5 input
0 - open
1 - shorting
Bit- 5 State of IN 6 input
0 - open
1 - shorting
Bit- 6 State of IN 7 input
0 - open
1 - shorting
Bit- 7 State of IN 8 input
0 - open
1 - shorting

Description of the Status 2 register

Bit-15... 6 Not used

Their States are free
Bit-5... 3 Operating mode and information unit
000 - interface switched off
001-8N1 - ASCII
010-7E1 - ASCII
011-7O1-ASCII
100-8N2-RTU
101-8E1-RTU
110-801-RTU
111-8N1-RTU

Bit-2... 0 Baud rate

000-2400 bit/s
$001-4800 \mathrm{bit} / \mathrm{s}$
010-9600 bit/s
011-19200 bit/s
100-38400 bit/s
101-57600 bit/s
110-115200 bit/s

6. TECHNICAL DATA

Logic levels

1 logic: shorted input
0 logic: open input
shorting resistance of the contact without potential $\geq 10 \mathrm{k} \Omega$
opening resistance of the contact without potential $\geq 150 \mathrm{k} \Omega$

Transmission data:

a) RS-485 interface:

- transmission protocol
- ASCII:
- RTU:
- baud rate:

2400, 4800, 9600, 19200, 38400, 57600, 115200 bit/s

- address:
1... 247
b) RS-232 interface:
- transmission protocol
- RTU:

MODBUS

- baud rate:

8N1

- address:

9600 bit/s
1
Power consumption by the module $\leq 1.5 \mathrm{VA}$
Rated operation conditions:

- supply voltage
$10 . . .24 \ldots 50 \mathrm{~V}$ a.c./d.c.
or $85 . . .230 \ldots 253 \mathrm{~V}$ a.c./d.c.
- Supply voltage frequency
- ambient temperature
- relative humidity
40...50/60... 440 Hz
$-20 . . .23 . . .55^{\circ} \mathrm{C}$
< 95\% (inadmissible condensation)
- external magnetic field
- work position
< $400 \mathrm{~A} / \mathrm{m}$
any

Storage and transport conditions:

- ambient temperature
$-20 . . .70^{\circ} \mathrm{C}$
- relative humidity
< 95\% (inadmissible condensation)

Ensured protection grade:

- from the housing IP 40
- from terminal sideIP 20

Dimensions

Weight

SM5 housing

Electromagnetic compatibility:

- Immunity
acc. to EN 61000-6-2
- emission
$45 \times 120 \times 100 \mathrm{~mm}$
$<0.25 \mathrm{~kg}$
adapted to be mounted on a 35 mm rail acc. to EN 60715

Safety requirements acc.to EN 61010-1:

- installation category III
- pollution grade2
maximal phase-to-earth work voltage:
- for the supply circuit 300 V
- for other circuits

7. BEFORE A FAILURE WILL BE DECLARED

In case of incorrect symptoms please to acquaint with the table below.

SYMPTOMS	PROCEDURE	REMARKS
1. The green diode is off.	Check the connection of the network cable	
2. The module does not communicate with the device master via the RS-232 port. Lack of transmission signalling on RxD and TxD diodes.	Check if the wire is connected to the appropriate module socket. Check if the device master is set on 9600 baud rate, 8N1 mode and address 1.	(RS-232 has constant trans- mission para- meters)
3. The module does not communicate with the device master via the RS-485 port. Lack of transmission signalling on RxD and TxD diodes.	Check if the wire is connected to the appropriate module terminal. Check if the device master is set onthe same transmission parameters as the modu- le (baud rate, mode, address). In case of necessity to change transmission parameters when we can- not communicate through RS-485 one can use the RS-232 port which has constant transmission parameters (in case of further problems, see the section 2). After changing e RS-485 parameters into the required one, one can switch over on RS-485 port.	

8. ORDERING CODES

Table 5

Mo			
Supply voltage: 85... $230 \ldots 253 \mathrm{~V}$ a.c./d.c. \qquad 20...24... 50 V a.c./d.c \qquad on order *. \qquad			
Kind of version: catalogue \qquad .00 custom -made * \qquad XX			
Acceptance tests: without extra requirements \qquad with an extra quality inspection certificate \qquad other requirements agreed with the manufacturer*. \qquad			

* code numbering is settled by the manufacturer.

Example of order

SM5 1007 code means:
SM5 - Module of 8 binary inputs
1 - supply: $85 \ldots 230 . . .253 \mathrm{~V}$ a.c/d.c.
00 - catalogue version
7 - with an extra quality inspection certificate

LUMEL

LUMEL S.A.

ul. Słubicka 4, 65-127 Zielona Góra, Poland tel.: +48 684575 100, fax +48 684575508 www.lumel.com.pl

Technical support:

tel.: (+48 68) 4575 143, 4575 141, 4575 144, 4575140
e-mail: export@lumel.com.pl

Export department:

tel.: (+48 68) 4575 130, 4575 131, 4575132
e-mail: export@lumel.com.pl

Calibration \& Attestation:

e-mail: laboratorium@lumel.com.pl

